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Excluded Volume Effects for Frequency Moments of
the Spin Autocorrelation Function of the Heisenberg
Model on a Square Lattice at High Temperatures
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The expansion coefficients in powers of time (or frequency moments) of the spin
autocorrelation function are represented at the simple self-consistent approxima-
tion as a sum of weighted trees on a Bethe lattice. Using the computer numera-
tion and the Monte Carlo method for self-avoidingly embedding these trees on
the square lattice, we estimate the moments and the convergence radius of the
expansion. We show that the moments decrease and the radius increases in con-
sequence of the volume exclusion.

KEY WORDS: Spin dynamics; frequency moments; excluded volume;
singular points.

Excluded volume effects are well known to modify properties of large
clusters’» modelled usually by lattice animals (i.e., connected clusters
embeddable in a regular lattice). They are the same for both real and for-
mal clusters. The real clusters are polymer molecules'’*® and percolation
clusters.® The formal clusters are formed in high-temperature® and short-
time®® expansions. In their turn peculiarities of the large clusters determine
properties of singularities of the expanded functions. Since the time expan-
sions are not so well known as temperature ones they are necessary to be
reported in detail.

We consider the isotropic Heisenberg model on a regular lattice at
high temperatures.®'" The Hamiltonian of the model is given by

H =2 J(S7S;+S7S7+S7S7) )
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where J;; is equal to J when 7 and j are the nearest-neighbour lattice sites
and zero otherwise, S7 is the a-component (e =X, y, z) of the vector spin
operator at the lattice site i, S=1/2. We calculate the time-dependent
autocorrelation function F(¢), which is defined by

F(t) = Sp{exp(i't) Sgexp(—iA'1) S5}/Sp{(S5)*} (2)

The function (2) may be expanded in powers of time
Ft)= ), (=1)" M,,t*"/(2n)! (3)

where the expansion coefficients are defined by the 2n-fold commutator:
Mo, =Sp{L A, [ A ,..[ H, S5]...]1 S5} /SpL(S5)%} (4)

On the other hand M,, are moments of the spectral density of the
autocorrelation function (2).(1?

The calculation rules of the multiple-fold commutations in (4) have
been considered in many works.'" From a geometrical point of view this
procedure has a similarity with cluster growth processes.> !> 14 In fact, if
the interaction of spin operator pair in the Hamiltonians in (4) is presented
by a bond between appropriate lattice sites then each commutation adds
the bond to the existing cluster. Using the well-known properties of the
Pauli matrices we have following results. The growing cluster is a bond one
with operators S% or (S%)*>=1/4 at their sites. Let name the first sites as
active ones and another sites as nonactive ones. Thus each commutation
adds the bond at an active site of the cluster. If the free end of the bond
is placed on an unoccupied lattice site then the cluster size increases on one
active site. If the free end of the bond is placed on a cluster site then the
commutation result depends on the projection of the site spin operator. It
may be zero or the site activity may be changed: the active site becomes the
nonactive one and vice versa. It should be noted that the total ensemble of
clusters is generated because in (4) the Hamiltonians have the sum of all
bonds and projections.

Among the clusters of this ensemble only ones with nonzero traces
give contributions to the moments (4). These are the clusters with the
active initial site 0 and with nonactive all another sites. Then M,, can be
obtained as a sum over connected graphs with 2n bonds and n + 1 or fewer
sites one of which is the initial site 0. The equal graphs constructed by dif-
ferent ways come as different terms of the sum. The replacement of multiple
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bonds by single bonds transforms this sum to the one over basic graphs g
(bond lattice animals):®

Mo, =7} N(g) Kz(8) (3)

g

where N(g) is the number of different ways that the given graph g may be

self-avoidingly embedded on a lattice, J*"K,,(g) is the contribution of the

given graph to the moment (K,,(g)—the spin weight coefficient). If in an

approximate theory one neglects the excluded volume effects then the

moment values and properties of the autocorrelation function (2) change.

In the present paper the attempt of estimating these changes is made.
The second moment or the mean-square frequency is given by

M,=2JZ

where Z is a number of nearest neighbours, in particular Z =2d for the
simple cubic lattice of the dimension d. Calculation of high order moments
is a very difficult problem. Up to now only few first moments have been
calculated: up to n=15 at d=1, up to n=4 at d=3, up to n=35 at
d=2® and d= c0.""V The sizes of clusters corresponding to these moments
are not enough for discovering the excluded volume effects. Therefore for
the moments we use below approximate expressions obtained on the basis
of the self-consistent approach of Resibois—DeLeener—Blume-Hubbard.® 7
Recently!) we have shown that at d — oo this approach becomes correct
and lattice trees give the main contribution in the sum (5). In the present
work we pass from the trees on the infinite-dimensional cubic lattice to trees
on the Bethe lattice!™ %314 of coordination number Z. Then the computer
simulation method is used to calculate the decrease of the moments of the
spin system on the square lattice after excluding of the contribution corre-
sponding to the trees with intersected branches. The moments up to 24
order are calculated by a method of exact enumeration of all trees whereas
the higher moments up to 40 order are approximate calculated by a Monte
Carlo method. In the end of the paper the radius of convergence of the
series (3) is estimated on the found moments.

We shall first consider the self-consistent equation for F(¢) obtained by
Resibois—DeLeener—Blume-Hubbard.(* 7 As it has been shown by usV
this equation reduces at d — oo to the equation for the correlation function
of a magnetic moment moving in the Gaussian fluctuating magnetic field,
the correlation function of which expresses in terms of F(z). The com-
plicated form of this nonlinear integral equation is caused by the noncom-
mutativity of magnetic moment rotations around different instant orienta-
tions of the magnetic field fluctuating in time. For qualitative analysis of
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the effects interesting us we shall make use the simple approximate self-
consistent equation of Blume-Hubbard”

F(t)zexp{ sz (t—1") (t’)dt'} (6)

where the exponent is the first term of the usual cumulant expansion. The
simplification of Eq. (6) is reached at the expense of neglect of the non-
commutativity of the rotations or neglect of change of the field orientation.
The physical motivation of such approximation obtaining the title of the
adiabatic theory of the line shape!® is the slowness of a velocity of the field
orientation change compared to the Larmor frequency.

Let us now examine Eq. (6) as an equation for the generating function
of moment clusters in the sum (5). For this purpose we consider the spin
system on a Bethe lattice of coordination number Z. In this case possible
graphs in (5) are root trees. Since each added site should be deactivated the
maximal possible size of the trees is equal to n+ 1 sites for the 2n-order
moment and these trees are built of double bonds. It is clear that the deac-
tivation of sites must be carry out sequentially from an end of a branch to
the root. To estimate the number of these maximal trees let us assume that
an adding and a deactivating of sites on different branches are independent.
Let w,(n) be a number of trees of n + 1 sites and n double bonds when the
root has only one neighbour. Then we have

2n—2)!
wl(n)—Z (2n))! (2(’1:1) )(2n ! wi(ny) wi(ny)---wi(ng_y) (7)

where the summation is over all possible distributions of 2n—2 bonds
among Z — 1 branches grown from the site nearest to the root. Introducing
the generating function

Z ) x*"/(2n)! (8)
we can obtain from (7) the equation
X xl
Wix)=1+a [ dx, [ de[ Wi(xy)]7 ! (9)
0 0

where a®>=1. Using W,(x) we can obtain generating functions for the
number of trees when the root has Z neighbours

WA =[Wi(1)]* (10)
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In order to consider the limiting case Z — oo let us introduce y =xZ'? in
(9). Then in this limit (10) reduces to

WA y) =exp {az J, v [ avs Wz(y»} (11)

It is easy to see that (11) is identical to (6) if y =itZ"? and a®=2.
When we pass from a*>=1 to a>=2 the number of trees with n+ 1 sites
increases by the factor of 2”. It is the consequence of the presence of three
spin projections in the Hamiltonian (1). Therefore one tree can be con-
structed by many ways differed one from another by a set of spin projec-
tion operators and by their connection order. The value 2" is the maximal
value of this factor. For some trees this factor is smaller since some com-
binations of spin operators give zero results. The relation a®>=1 corre-
sponds to the existence of a single combination for each tree.

Thus with the help of Eq. (9) and (10) we can calculate approximately
the summary spin weight coefficient of all maximal root trees with #» bonds
on the Bethe lattice of coordination number Z (as in (5) we now return
from the double bonds to single bonds). The spin weight coefficient K,,(g)
for each such a tree is the product of the weight coefficients K, of its sites

(2n)!

K= B g (12)

where n,, n,,..., n; are the numbers of bonds in k branches grown from a
given site, ny=n, +n,+ --- +n,. We shall assume a*=2 in the following.

We now transfer the trees from the Z =4 Bethe lattice on a square
one. The part of the trees can be embedded on the square lattice only at
repeated use of the same sites, i.e.,, at allowing of self-intersections. The
another trees can be embedded without self-intersections. To introduce the
excluded volume effects for the moments we must discard the contribution
of the trees with self-intersections in (5). Such a calculation of M,, by exact
computer enumerations is carried out via the following scheme. A n-bond
tree is self-avoidingly embedded on the square lattice. The spin weight coef-
ficient K,,(g) is calculated for this tree. All various such n-bond trees are
enumerated and their spin weight coefficients are put together. This sum is
M,,/J?*". The results have been obtained up to n=12 and are given in
Table 1.

To estimate the higher order moments a Monte Carlo method will be
used. But at the beginning we rewrite Eq. (4) in the form

Mo, =J*(n+ 1) N,Kp,, Ky, =) K,,(8) N(g)/[(n+1)N,] (13)
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where N, is the full number of lattice trees with n bonds and multiplicand
n+ 1 is the number of ways of choosing the initial site (root) on a tree. The
formula (13) is still exact since we have produced identical transformations.
The next step we can replace exact value K,, with the its approximate
value found by the Monte Carlo method. For this purpose we construct
trees g; with n bonds by connecting sequentially bonds choosing at random.
A tree is deleted if it has a closed loop of bonds. In order to transform the
sum over the different trees in (13) to the sum over the N constructed ran-
dom trees with n bonds it is necessary to take into account that the same
tree g can be constructed by P,(g) ways. Using P,(g) we obtain

K=Y K2n<g,->P;1<g,->/ S P-l(g,) (14)

i=1 i=1

Above we have defined the evaluation rule for the weight factor K,,(g)—
the number of different ways in which the tree g with » double bonds can
be constructed. The evaluation rule of the weight factor P,(g)—the number
of different ways to construct the ordinary tree!™ with n single bonds—
turns out from the rule for K,,(g) after replacing all numbers 2n, by n, and
a*=1in (12).

The values of moments up to 40 order calculated using (13) and (14)
are also given in Table 1. In Eq. (13) the values N, have been taken from
the work:*> at n < 15—the exact values, and at n > 15—the approximate
values from the asymptotic expression

N,~An='"(1 + Bn—4)
where A=15.142, A=0.527, B=—0.376, 4=1.34. We have generated
N=10% for n<12, N=10° for n from 13 to 15, and N=103% for n=20.
One can see from Table 1 that the values M,, obtained by the Monte
Carlo method at n<12 agree up to well with those obtained by exact
enumeration method. The error about 30% for M,, was estimated by
treating the data consisted of 20 parts.

We now turn to the analysis of possible changes in dynamical proper-
ties of the spin system caused by the excluded volume effects. In the pre-
vious works!® ") we have shown that in the limit d — oo the solution of
the nonlinear integral equation obtained for the autocorrelation function in
the self-consistent approach has the important property—the existence of
singular points on the imaginary time axis. The solution of the equation (9)
also has singularities (Eq. (9) can be transformed to the differential one by
differentiating twice and solving in quadratures).
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Table 1. Values of M,,/M} for the Z=4 Bethe Lattice and for the Square (sq)
Lattice Calculated by the Exact Enumeration of Trees (Exact) and the
Monte Carlo (MC) Method

n Bethe sq (exact) sq (MC)
2 3 3 3.004
3 15.75 15.75 15.748
4 126 124 123.902
5 1429.31 1338.81 1338.25
6 2.183 x 10* 1.866 x 10* 1.867 x 10*
7 4318 % 10° 3.222 x 10° 3.229 x 10°
8 1.074 x 107 6.702 x 10° 6.695 x 10°
9 3.280 x 108 1.643 x 10® 1.636 x 108
10 1.207 x 101° 4.671 x 10° 4.649 x 10°
11 5.269 x 10! 1.520 x 10" 1.543 x 10"
12 2.689 x 10" 5.605 x 102 5517 %102
13 1.588 x 10'* 2294 % 10
14 1.074 x 107 1.170 x 106
15 8.249 x 108 6.081 x 107
20 1.168 x 10%° 7.014 x 10%¢

Let us approximately calculate the autocorrelation function (2) of the
spin system on the Bethe lattice by the use of Egs. (9) and (10) with x =itJ
and a®>=2 (it is easy to see that the change of value «? is equal to the
change of the time scale). In the neighbourhood of the two closest
singularities at +it,

F ()~ C(it+1,)~2" (15)
where

L, Tup-yz) (16)
© T /ar(—1z)

I'(x) is gamma-function, 7, = 7(2M32)'? is the coordinate of singularities in
the limit Z — oo found in the work” for the equation (6). The coordinate
of the closest singular point determines the convergence radius of time-
power series of the considered function. It should be noted that at Z=2
this radius defined by (16) becomes infinite in full accordance with the
theorem of Araki'® for one-dimensional systems.

On the other hand the convergence radius of the series (3) can be
defined by the moments calculated above and given in Table 1. We first

m=Z(Z-2), C=(2m?*M,)",
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calculate this radius using the Cauchy formula as the limit at » — oo of the
sequence of the values

T, =[(2n)!/M,, 1" (17)

The results are shown on the Fig. 1. To decrease the slope of the sequences
of points for convenience of the analysis we move on from (17) to the
formula

2C-I'(2n+2m)| Ven+2m)
g = | 22T Am) (18)
My, I'(2m)

taking into account the behaviour of the functions (15) in the neighbour-
hoods of the singular points. This formula is obtained by equating the coef-
ficient before #>* in (3) and in the short-time expansion

. —2m . N—2m_ - 2 2 2C-T'(2n+2m) .,
Clit+1,) "+ C(it —.) —ngo( %) “Taman T
The new sequences recalculated with m =2 are also shown on the Fig. 1.
The sequence for the Bethe lattice becomes parallel to the abscissa as
expected.

The sequence for the square lattice remains the slope that may be
testify to the greater value m in this case. To decrease the slope we increase
m up to 4 and accordingly the coefficient C changes. Using new sequence
the estimation

T, RTy=54//M, (19)

is obtained. The comparison of (19) with the result

t,=371//M,

found from (16) at Z=4 shows that the convergence radius increases
about in 1.5 times in consequence of the volume exclusion.

This result is obtained using the approximate values of moments. To
calculate the exact values of moments using the formula (5) or (13) it is
necessary to take into account, at first, the change of the spin weight coef-
ficient of the lattice trees, secondly, contributions of lattice animals (graphs)
with loops. As a consequence the moments vary but in our opinion the fast
growth of their values with order resulting to the divergence of time-power
series retain. Moreover the excluded volume effects on the exact moments
may be weaken because multiple interactions with the same spin are
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Fig. 1. Sequences of estimates for the convergence radius versus 1/n according to equations
(17) and (18) with m =2 +4. Open and solid circles represent respectively the exact enumera-
tion of trees and the Monte Carlo data for the square lattice, dashed lines represent the data
for the Z =4 Bethe lattice.

allowed (of course with other spin coefficients than above at intersections
of the tree branches). We have discarded the multiple interactions in order
to clarify the fundamental question on the convergence of the series or on
the existence of the singular points of the autocorrelation function. As it is
well known from the theory of critical phenomena''” singularities are
possible only at infinite systems, i.e., only at involving of an infinite number
of spins. In this sense the repeated use of the same spin is useless though
it varies the coordinate of similar singularity.

Thus the introduction of excluded volume effects leads to decreasing of
the moments of the spin autocorrelation function and to increasing of the
convergence radius of the its time power series. Nevertheless, on the our
estimate, the radius value remains finite. Then the singular points of the
autocorrelation function of the two-dimensional Heisenberg spin system
are placed at a finite time distance like ones of the infinite dimensional
system but not at infinite time distance taking place for an one-dimensional
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system. So in a dynamical theory of spin systems it is necessary to take into
consideration such singular points.
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